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A Sequential Procedure for Determining the

*
Length of a Steady-State Simulation

Averill M. Law and John S. Carson
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A common problem faced by simulators is that of constructing a

confidence interval for the steady-state mean of a stochastic process.
} We have reviewed the existing procedures for this problem and found
that they all produce confidence intervals with coverages which may

be considerably lower than desired. Thus, in many cases simulators

will have more confidence in their results than is justified. )
In this paper we present a new sequential procedure based on

the method of batch means for constructing a confidence interval

with coverage close to the desired level. Empirical results for a

large number of stochastic systems indicate that the new procedure

performs quite wvell.

*This research was supported by the Office of Naval Research under
contract NO0014-76-C-0403 (NR 047-145).
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Let {Xi,i > 1} be a stochastic process with steady-state mean
n

g = lim :E: Xi/n (with probability 1).
n —»o

=1

A common problem faced by simulators is that of constructing a confi-
dence interval (c.i.) for u. There are two basic approaches: (1)
Construct a c.i. from an arbitrary fixed sample size (2) Sequentially
increase the sample size until an "acceptable" c.i. can be constructed.

For the fixed sample size approach, five methods have been sug-
gested in the simulation literature: replication, batch means, spectrum
analysis, autoregressive representation, and regeneration cycles. (See
Crane and Iglehart [6,7], Fishman [10,11], Iglehart [12], and Law [14].)
Unfortunately, all of these methods have the drawback that if the total
sample size is chosen too small, then the actual coverage of a con-
structed c.i. may be considerably lower than desired. This was empir-
ically shown for repiication and batch means in [14], and will be
demonstrated for the other three methods in Law [16]. (These results
were reported at the 1976 Winter Simulation Conference.)

If the total sample size is made sufficiently large, then the
actual coverace will be close to the desired level; hovwever, what is
sufficiently larae for one stochastic system may not be adequate for
another. Thus, in practice a simulator will not know the actual

coverage of his c.i.
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The above summary suggests that a procedure is needed to determine

the total sample size necessary to achieve "acceptable" coverage. Three

such procedures have been suggested. Fishman [9] applied a procedure
based on autoregressive representation to 100 independent simulation
runs of an #/M/1 queue with p = .9. On each run he attempted to con-
struct a 90% c.i. for the mean number of customers in system, L. He “;

found that between 66 and 79 percent of the c.i.'s covered L, depending

on the choice of the initial sample size. Robinson [20] applied a
similar sequential procedure based on regeneration cycles to 100 runs
of the M/M/1 queue with p = .5. On each run he attempted to construct
a 90% c.i. for the mean delay in queue, d. He found that between 60
and 63 percent of the c.i.'s covered d, depending on the initial sample
size. Mechanic and McKay [17] developed a procedure based on batch
means that was difficult to understand and was never substantially ]
tested. However, it was their work that provided the initial motivation
for the sequential procedure presented in the next section.

The remainder of this paper is organized as follows. In Sections
1 and 2, respectively, we describe and justify the new procedure. The
results of testing the procedure on a large number of queueing, inven-
tory, and computer models are given in Section 3. Finally, in Section
4 we summarize our findings and comment on the computational efficiency

of the procedure.
1. The Procedure

Suppose we make a simulation run of length »n and then divide the
resulting observations XI,XZ,...,Xn into k batches of length m (n=k-m).

Let ?J(m) (§=1,2,...,k) be the sample mean of the m observations in the
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Jjth batch and let X(k,m) = :E: E}(m)/k be the grand sample mean. If m
J*1
is sufficiently large, then the }}(m)'s will be essentially uncorrelated

(see Section 2) and an approximate 100(1 - a)% c.i. for p is given by

(k,m) + tk_]’]_a/z-\/az[?(k,m)] : (1)

where tk-] 1-a/2 is the 1-a/2 point for a ¢ distribution with k-1 degrees

>l

of freedom and
k 2
82[7?(k,m)] = Z [?J.(m) - )’?(k,m)]/k(k a1 (2)
F=l
This approach to constructing a c.i. is called the method of batch means

(see [14]).

The validity of the c.i. given by (1) depends crucially on the X}(m)'s

being approximately uncorrelated (see Section 2). We will attempt to
determine the presence of significant correlation by estimating p,(m),
the lag 1 correlation between the i}(m)‘s. The usual estimator of p,(m)

is

k 2
o, (kym) = z [Yj(m)-i(k,mE‘ [Yjﬂ(m)-?(k,m] / Z[Yj(m)-i(k,m)]

J=1 J=1

¥ X
However, if p,(k/2,m) and p,(k/2,m) are, respectively, the usual lag 1
estimators based on the first k/2 and last k/2 batches (k is assumed

to be even), then we can also estimate p,(m) by the jackknifed estimator
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Bl(k,m) = 2p (k,m) - [6:(k/2,m) B af(k/z,m)]/z.

He will use Bl(k’M) rather than 61(k’M) to estimate pl(m) since, in
general, it will be less biased (see Miller [18]).

We now state our sequential procedure.
Step 0. Let e = .225, n, =600, n, =800, and ¢ = 1.

Step 1.a. Divide the n observations into 400 batches of size
m = n./400. Compute 5,(400,m) from ig(m) (4=1,2,...,400).
If 5,(400,m) > ¢, go to Step l.c. If 51(400,m) < 0 (see

Note 1), go to Step 2. Otherwise, go to Step 1.b.

b. Divide n, into 200 batches of size 2m. Compute ©,(200,2m)
from }3(2m) (4=1,2,...,200). (See Note 2.) If p,(200,2m) <
p,(400,m) (see Note 3), go to Step 2. Otherwise, go to

Step 1.c.

C. Replace z by ©7 + 1, set n, = Z"i-z (see Note 4), collect

the additional observations required, and go to Step 1.a.

Step 2. Divide n, into 40 batches of size 10m. Use E}(lOm)
(4=1,2,...,40) (see Note 2) in (1) to construct a c.i.

for u.

Notes:
1. If p,(m) <0, then, as is discussed in Section 2, 40 batches of
size 10m will most 1ikely produce a c.i. with at least 100(1 - a)%

coverage.
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2. An appropriate number of the }}(m)'s may be averaged to compute

the i}(Zm)‘s or the E}(IOm)'s.

3. If0<p,(m) < .225 and if pl(M') is decreasing for m’ > m, then
batches of size 10m are approximately uncorrelated (see Section 2).
We test to see if p (m') is decreasing for m’ > m by checking to
see whether pl(2m) < pl(m). v

4. The successive sample sizes considered are 800,1200,1600,2400,... .

Thus, the total sample size is doubled every other iteration.

The sequential procedure which is described above uses 400 batches
of size m to decide when 40 batches of size 10m are uncorrelated. By
using 400 rather than 40 batches, the correlation gstimator. which is
used to determine the stopping point, has a smaller bias and variance.

In fact, the procedure will not work well if the correlation is estimated

directly from 40 batches.

The next section gives a justification of the procedure. The reader
who is primarily interested in the procedure's performance may proceed

directly to Section 3.

2. Justification
In the following two subsections we discuss the general form of the

sequential procedure and the choice of the stopping value c.

A. General Form of the Procedure

Suppose that the observations X sX,s.0.0X are from a covariance

stationary process. For 7=0,1,...,n-1, let Ci = COU[X&,X3.+i] and for

i20,1,... k-1, let ¢ (m) = CovlX.(m), X, (m)] and p,(m) = C,(m)/C (m).

The following lemma, which is proved in the appendix, shows that
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pi(m) 20 (¢ > 1) for sufficiently large m.

oo

Lemma 1. If 0 < Z CQ < =, then pl../m) + 0 as m » o for ©=1,2,...,k-1.

L= -
Let b(k,m) be defined by
E(a?[X(k,m) 1} = blk,m)o?[X(k,m) ],

where o2[X(k,m)] was given by (2). We now prove that 62[X(k,m)] is
asymptoticaliy unbiased as m + .

o0

Theorem 2. If O < :E: Cp < then t‘k,m) » 1 as m + » for all k > 2.

= -

Proof: It is easy to show that (see [14])

k-1
{k/l:] + 2 ? (1 - z/k)o;.("n)]} -1
=]

b(k,m) = e ' w i
k= ]

The desired result follows since oi(m; + 0 as m +» = for 2=1,2,...,k-1
by the lemma.

The above expression for b(k,m) shows that d‘[f(k,m)] is unbiased
when oi(m) = 0 for ¢=1,2,...,k-1, has a negative bias (b(k,m) < 1) when
pi(m) > 0VZ, and has a positive bias (b(k,m) > 1) when ni(w’ 0Vv:.
The case pi(m) > 0 yi is of the greatest concern since o2[X(k,m)] will
then be underestimated and the toverage of the resulting c.i. is likely

to be less than desired.
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If we choose m large enough so that the }}(m)'s are approximately
normally distributed in addition to being uncorrelated, then it becomes
plausible to proceed as if the i}(m)‘s were independent identically
distributed normal random variables (r.v.'s) and to use (1) to construct
a c.i. for u.

There are three potential sources of error when using (1) to con-

struct a c.i.:

(1) Bias in 62[¥(k,m)] when m is too small for the fb(m)'s to be
uncorrelated.
(2) Nonnormality of the ?}(m)'s.
(3) The fact that {Xi’i > 1} is not, in practice, covariance sta-
tionary.
However, for simple queueing models (e.g., M/M/1) Law [14] found that
the bias in 82[7(k,m)] was the most serious source of error and that
nonnormality was not a problem for k approximately 20 or more. This
suggests that a sequential procedure based on batch means must be
able to determine that batch size, m, for which the ?}(m)'s are
approximately uncorrelated.

To determine the types of correlation which can occur in practice,

we studied the following processes for which pi(m) and b(k,m) can be
analytically computed:
(1) {Di,i > 1} for the M/M/1 queue (see Daley [8]) with
p=.5,.8, and .9, where Di is the delay in queue of the Zth

customer.

e i e M

(2) {Ei,i > 1} for an (s,S) inventory system (see [14) for details),

where B, is the expenditure in the ith period.
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(3) Thirty different AR(1), AR(2), and ARMA(1,1) time series
models (see Box and Jenkins [3, p. 46]) with parameters

chosen over the entire range of feasible values.

From studying these 34 stochastic processes, we found essentially
three types of behavior for p,(m) as a function of m, examples of
which are shown in Figures 1, 2, and 3. For type 1 behavior the
lag 1 correlation p,(m) strictly decreases to zero. If for some m,
p,(m) < .4, then .9 < b(40,10m) < 1 and p (10m) = .05. That is, if
p,(m) < .4, then the variance estimator based on 40 batches of size
10m is approximately unbiased. The #/!/1 queue exhibits type 1
behavior.

In type 2 behavior, p,(m) changes direction one or more times
and then strictly decreases to zero. If for some m, p,(m) < .4 and
pl(m')is decreasing for m' > m, then .9 < b(40,10m) < 1 and
pl(lOm) ~ .05. The M/M/1 queue with service in random order (SIRO)
is of this type (see Figure 4).

For type 3 behavior, p,(m) < 0 and 5(40,10m) > 1, for all m. In
this case the ?3(10m)'s may be correlated, but the coverage will be at
least as great as that desired. The (s,S) inventory system exhibits
type 3 behavior.

We certainly do not claim that the above three types of behavior
are the only ones that can occur. In fact, for some of the time series
models we studied, p,(m) can be positive or negative. However, if
p,(m) > 0 for some m, then we found that type 1 behavior is followed,

and if p,(m) < 0 for some m, then behavior similar to that of type 3

is followed.
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FIGURE CAPTIONS

Figure 1. Type 1 Behavior.

Figure 2. Type 2 Behavior.

Figure 3. Type 3 Behavior.
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Types 1 and 2 behavior described above explain why the procedure
checks for p,(m) < ¢ and p,(m') decreasing for m' > m. Type 3 behavior

explains why it checks for p,(m) < 0.

B. The Choice of the Stopping Value ¢

The above discussion was predicated upon knowing p,(m) which, in
fact, is estimated by §,(400,m). Thus, it is possible for p (m) to be
much larger than .4, but to have the estimate p, (400,m) < .4, which
might result in the procedure's stopping prematurely. To determine how
small c should be to account for the sampling variability of ¢ (400,m),
we applied our sequential procedure with various values of ¢ to the
M/M/1 FIFO queue, the M/M/1 LIFO queue, and the M/M/1 SIRO queue, each
with p = .8. For each system we made 200 independent simulation runs of
the process {D,,7>1} and attempted to construct 90% c.1.'s for 4= 3.2. ,
The results of these simulations are given in Table I. Note that for
the FIFO and SIRO disciplines, ¢ = .375 gives good coverage,-but that
for the LIFO case a much smaller value of ¢ is required. We chose
e = .225 as our stopping value because we felt that a true coverage
of 80% is the minimum acceptable coverage for a "90% c.i." A smaller
value of ¢ would result in better coverage for LIFO, but also in a
considerable increase in sample size for the other models. (These
additional data would not be wasted if a smaller c.i. half length was
desired.)

The fact that a smaller value of ¢ is required for the LIFO model
is due not to the variability of §, (400,m), but rather to p,(m)'s being
a more slowly decreasing functipn of m than for any of the other 44
models considered in this paper. This can be seen in Figure 4 where

we plot p (m) (the average of the 200 values of {,(400,m)) as a function

Y v
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TABLE I. Proportion of Coverage and Average
Sample Size for Various Values of c.
M/M/1 FIFO M/M/1 LIFO M/M/1 SIRO
p=.8 p = .8 p=.8
Average Average Average
e Coverage Sample Coverage | Sample Coverage | Sample
Size Size Size
.375 .900 36464 .650 3882 .880 35616
.250 .900 59776 .760 15054 .860 59680
.225 .890 67584 .805 19100 .865 69280
.200 .890 77952 .825 26796 .860 77472
.150 .910 100992 .840 41058 .865 99003




FIGURE CAPTION

Figure 4. b, (m) as a Function of m for the m/M/1

FIFO, LIFO, and SIRO Queues, each with

p = .8.
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of m for the three queues. Observe that L tarts lower than FIFO and
SIRO but decreases more slowly. In particular, p,(m) < .4 form =6,

but p,(10m) = .19 (B};m) < .4 implies p,(10m) = .05 for the other models).
By choosing ¢ = .225, we are designing the sequential procedure to per-

form adequately in the "worst" case.

3. Empirical Results
In order to see how well the sequential procedure works, we simulated
a large number of stochastic systems for which analytical results are
available. The results of these simulations are presented in the next
three subsections.
The random numbers, {U.,% > 1}, used in these simulations were
generated froé the following generator which is available on the

Univac 1110:

= (E1S 35 (0o
Y, = (S'7,_) +1) md 2°% (i=1,2,...)

u; = 1’1:/2’s (Em) 2,020,

where Y, is a specified seed. For a discussion of this generator, see

Coveyou and Macpherson [5].

A. Queueing Systems

We first considered a variety of simple queueing systems. Let E,,
M, and H, denote, respectively, the 4-Erlang, the exponential, and the
hyperexponential distributions with coefficients of variation .5, 1,
and 2. (See Law [13] for further discussion of H,.) For each of the
queueing systems M/M/1 (p = .5), E/M/1 (p = .8), M/H,/1 (p = .8),
M/M/2 (p = .8), M/M/1/M/1 (p = .8), we made 100 independent simulation
runs of the stochastic process {Di,i > 1} and attempted to construct

90% c.i.'s for d. For each system, £(A) = 1 (the mean interarrival




time) and D, = 0 (1.e., no customers are present at time zero). In
Table II we give for each system d, the proportion of the 100 c.i.'s
which covered d, the average sample size at termination, and the aver-
age c.i. half length divided by d. (We will henceforth call the aver-
age c.i. half length divided by u the "relative precision" of the c.i.)
For completeness we also give the previous results for the M/M/1 queue
with p = .8 and FIFO, LIFO, and SIRO queue disciplines. Observe that
the average sample size at termination is quite system dependent. For
example, the M/M/1 queue with p = .8 requires a sample size about 8
times larger than that required by the M/M/1 queue with p = .5. This
is, of course, due to the fact that the process {Di:i.i 1} is more cor-
related for larger values of p.

For the M/M/1 queue it can be shown that (see [8]) an approximate

theoretical sample size of
2

L [ec))?p3(2 + 5p - 4p* + A’)P”"” (3)
. (1 -p)* B

is required to obtain a c.i. whose half length is &d (0 < § < 1).

Since the average half length for p = .5 was .098 of d (see Table II),

if we substitute & = .098 into (3), we get a theoretical sample size of
8572. Similarly, substitution of 6§ = .068 into (3) gives a theoretical
sample size of 75813 for p = .8. These sample sizes compare closely to

those actually obtained by the procedure.

B. An Inventory System
The second type of stochastic system we considered was an (s,S)

inventory system with zero delivery lag and backlogging. This system
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TABLE II. Empirical Results for Queueing Systems.

st e e L e
Runs Coverage Size
M/M/1 FIFO |.5 .50 100 .850 8352 .098
M/M/1 FIFO {.8 3.20 200 .890 67584 .068
M/M/1 LIFO |.8 3.20 200 .805 19100 141
i M/M/1 SIRO |.8 3.20 go0 ' .865 69280 .067
| E,/M/ .8 1.81 100 .830 42240 .075
M/H3 /1 .8 8.00 100 .800 188928 .072
M/M/2 .8 2.84 100 .910 65792 .076
M/M/1/M/1 |8 6.40 100 .900 88832 .049
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is described in detail in [14]. We made 100 independent simulation
runs of the process (Ei,i > 1} and attempted to construct 90% c.i.'s
for the steady-state mean expenditure per period, ¢ = 112.108. We
found that each run terminated on the first iteration (»n = 800) and
that 99 out of 100 c.i.'s covered e. These results can be explained

by the fact that p,(m) <0 (¢ > 1) and b(40,10m) > 1 for this system

(see [14] for some actual values).

C. Computer Models

To see how the sequential procedure works on more complex systems,
we simulated two models of computer systems. These models resemble more
closely the type of system that might actually be simulated in the real
world than do the simple models of the previous two subsections. We
first considered a model of a time-shared computer system which was
studied by Adiri and Avi-Itzhak [1] and more recently in a simulation
context by Sargent [19]. There are ¥ terminals and a single central pro-
cessing unit (CPU) as shown in Figure 5. The operator of each terminal
"thinks" for an amount of time which is an exponential r.v. with rate
u; and then sends a message with service time which is an exponential
r.v. with rate pu,. The arriving jobs join a FIFO queue at the CPU.
The CPU allocates to each job a maximum service quantum of length g.
If the (remaining) service time of a job, s, is less than or equal to
q, then the CPU spends time s plus 1 (a fixed overhead) processing
the job and the job returns to its terminal. If s > q, then the CPU
spends time ¢ plus 1 processing the job and the job joins the end of
the queue. This process is repeated until the job's service time is

eventually completed.

o




FIGURE CAPTIONS

Figure 5. Time-Shared Computer Model.

Figure 6. Central-Server Computer Model.
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We let ¥ = 35, u, = 1/25, u, = 5/4, ¢ = .1, T = .015, and then
simulated the stochastic process {Ri’i > 1}, where Ri is the response
time of the ith job requesting service and all terminals are in the
think state at time zero. Our objective was to construct a 90% c.i.
for the steady-state mean response time, r = 8.246. \le made 100 inde-
pendent runs and obtained a coverage of .92, an average sample size of
36160, and a relative precision of .036.

We next considered the central-server model of a multiprogrammed
computer system (see Buzen [4]). There is a CPU (unit 1) and #-1
peripheral units (units 2 through ) as shown in Figure 6. Each unit
has its own FIFO queue and the service time at unit Z is an exponential
r.v. with rate W, (221,2,...,4). It is assumed that there are # jobs in
the system at all times. When a job completes service at the CPU it
leaves the system with probability p, or it goes to peripheral unit 7
with probability p; (7=2,3, ..,M},a job leaving the system is instanta-
neously replaced by a new job which joins the end of the CPU queue. A
Job leaving a peripheral unit also joins the CPU queue.

We made 100 simulation runs of the process {Ri,i > 1} for four
different sets of parameters and on each run we attempted to construct
a 90% c.i. for r (the steady-state mean time between entries to the CPU
queue). The parameters for these models and the results of the simula-
tions are given in Table III. Also included are the steady-state proba-
bility that unit 7 is busy, L and the state of the system at time

zero, (2,,22,...,QM), where 2, is the number of jobs at unit <.

—————

w
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4. Summary

We have used the sequential procedure to construct "90% c.i.'s"
for 13 stochastic systems (excluding the inventory model), obtaining
coverages between .80 and .92 and relative precisions between .027

and .141. Averaging over the 13 systems, we obtain a mean coverage

of .867 and a mean relative precision of .067.

The sequential procedure described here is fairly easy to program,
is computationally efficient, and requires only 800 storage locations
to store the batch means. A FORTRAN program for the procedure and an

explanation of how to use it may be found in Law and Carson [15].

Appendi x

Our objective is to prove Lemma 1 (see Section 2).

m=1

Lemma A.1. If Z CQ converges, thenZ M‘R/m +0as m~> o,
2=1

2=1
m-1 . m=1 m=1
Proof: z KCR‘/m = z Cl = Z (m - SL)CQ/m.
2=1 2=1 2=1

The result follows since the second sum on the right-hand side converges
to :E: Cy by Lemma 8.3.1 of Anderson [2, p. 460].
2=1

) m=1

A i 1 - .
Lemma A.2. If :E: CR converges, then Si(m) = :E: (1 - J/m)Cim+J -0

2=1 Jel

aSm-»wforizl.
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L 2T -
(2+1)m-1 (2+1)m=1 m (2+1)m=-1
1 o :
Proof: Si(m) = Z CQ - z ch/m + Z lcl/m + 2 Z CQ.
L=2m+] =1 2=1 L=im+]

The first and fourth sums converge to O since z ¢, converges. The second
2=1
and third sums converge to 0 by Lemma A.1.

@ m-]
2 - -
Lemma A.3. If :E: C2 converges, then Si(m) = :E: (]-J/m)Cim_j 0 as
2=1 Jj=1

m + o for 7 3_1.

Proof: s; (m)

m=-1 m=1
z (im-j)Cim_J./m -(2-1) Z O
§=1 g=1

im-1 (2=-1)m im=1
= Z zcl/m - z !Z,Cz/m - (2 -1) Z Cz‘
2=1 2=1 2=(72-1)m+1

The first and second sums converge to O by Lemma A.1. The third sum

oo

converges to 0 since :E: C, converges.

'3
2=1

Lemma 1. If O - :E: “2 < «, then pf(w) > 0 as m > » for £=1,2,....%-1.

= = o

Proof: Since p;(m) = mC.(m)[mCqy(m) and mCq(m) - :E: Cpasm=w

g= -
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(see [2, p. 459]), it suffices to show that mC;(m) » 0 as m » =. However,
mCi(m) * G ¥ S;(m) + S;(m) (see [14]) and e 0 as m + = since
:E: C, converges. The desired result now follows from Lemmas A.2 and A.3.

2=1
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